A pr 2 01 5 Field theory and weak Euler - Lagrange equation for classical particle - field systems
نویسندگان
چکیده
Abstract It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a socalled weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived from the underlying space-time symmetry.
منابع مشابه
Field theory and weak Euler-Lagrange equation for classical particle-field systems.
It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficult...
متن کاملOn Variations in Discrete Mechanics and Field Theory
Some problems on variations are raised for classical discrete mechanics and field theory and the difference variational approach with variable step-length is proposed motivated by Lee’s approach to discrete mechanics and the difference discrete variational principle for difference discrete mechanics and field theory on regular lattice. Based upon Hamilton’s principle for the vertical variations...
متن کامل1 8 Ju l 2 00 1 NIKHEF 01 - 007 Particles , fluids and vortices
Classical particle mechanics on curved spaces is related to the flow of ideal fluids, by a dual interpretation of the Hamilton-Jacobi equation. As in second quantization, the procedure relates the description of a system with a finite number of degrees of freedom to one with infinitely many degrees of freedom. In some two-dimensional fluid mechanics models a duality transformation between the v...
متن کاملSymplectic , Multisymplectic Structures and Euler - Lagrange Cohomology
We study the Euler-Lagrange cohomology and explore the symplectic or multisym-plectic geometry and their preserving properties in classical mechanism and classical field theory in Lagrangian and Hamiltonian formalism in each case respectively. By virtue of the Euler-Lagrange cohomology that is nontrivial in the configuration space, we show that the symplectic or multisymplectic geometry and rel...
متن کاملThe Reduced Euler-Lagrange Equations
Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...
متن کامل